

中科瑞泰(北京)生物科技有限公司

Tel: 400-699-0631

http:// <u>www.real-tims.com.cn</u> E-mail: <u>real-times@vip.163.com</u>

RealPAGE Native BN/CN 预制胶(U型板,通用型,12孔)

RealPAGE Native BN/CN Precast Gels(U Type Plate, Universal, 12 Wells)

● 货品规格:

· in ·			
货号	名称	规格	保存
RTD6138-0312	3-12% RealPAGE Native BN/CN 预制胶 (U 型板,通用型,12 孔)	10 板	4℃
RTD6138-0416	4-16% RealPAGE Native BN/CN 预制胶 (U 型板,通用型,12 孔)	10 板	4℃

● 产品简介:

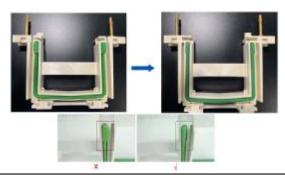
Blue/Clear Native PAGE(BN/CN-PAGE)是一种从生物样品(质膜,胞浆等)中分离分子量 10 kD-10 M kD 范围的蛋白质复合物的电泳技术。其原理是用温和去污剂(如 DDM,digitonin)将蛋白复合体从细胞膜中以近似天然的状态分离出来,Blue Native PAGE(BN-PAGE)是用考马斯亮蓝 G-250 代替 SDS 与蛋白结合而使其带负电荷,根据蛋白分子量不同在 PAGE 胶中得到分离;Clear Native PAGE(CN-PAGE)是电泳缓冲液中不加入任何染料,电泳中始终保持蛋白的天然电荷和活性状态,然而,其蛋白的分辨率要低于 Blue Native PAGE。另外,BN-PAGE 由于考马斯亮蓝 G-250存在,使蛋白都覆盖上负电荷,可以分离碱性蛋白(pl>7);而 CN-PAGE 只适合于酸性蛋白(pl<7)的分离。

本产品包括 BN/CN-PAGE 制胶的所有成分,方便使用。可以用于分离分子量在 10 kD-10M kD 的蛋白复合体,样品可以来于胞浆、细胞总裂解液、细胞膜、线粒体膜和叶绿体膜等。电泳后可直接用于考染、银染、Western 杂交、SDS-PAGE 电泳、蛋白纯化、蛋白活性检测等分析实验,也可直接用于电洗脱制备蛋白。

● 运输和贮存:

本产品常温运输:组份按照标签温度贮存:有效期一年。

● 使用说明:


1. 样品制备:

该产品不含样品制备的相关试剂,根据样品种类选择不同提取方法。植物类囊体 BN 样品制备可以选择植物类囊体膜提取试剂盒(货号:RTU5002); 动物总蛋白 BN 样品制备可以选择动物胞浆活性蛋白提取试剂盒(货号:RTD8106); 动物膜蛋白 BN 样品制备可以选择动物膜蛋白提取试剂盒(货号:RTD8111,RTD8112); 动物线粒体 BN 样品制备可以选择动物线粒体提取试剂盒(货号:RTD8115 和 RTD8116)。

2. 电泳:

2.1 拆开预制胶包装,将预制胶安装在合适的电泳槽中。

注:伯乐 Mini III 或 Mini-PROTEAN Tetra Cell,天能 VE-180,六一 24K 系列电泳槽请确保密封条的安装方向(下图)。

六一其他系列,君意东方 JY-SCZ2/4,百晶 BG-verMINI 等电泳槽可以直接使用预制胶。 不兼容 Thermol 系列电泳槽。

2.2 准备电泳缓冲液:

将 $10 \times BN/CN$ PAGE 电泳缓冲液(干粉)溶于 500 ml 超纯水中,彻底溶解,不要调节 $pH(pH\sim7.0)$ 。 用前稀释 10 倍即配成 $1 \times BN/CN$ PAGE 电泳缓冲液。

2.2.1 CN-PAGE 电泳:

阳极缓冲液(外槽)和阴极缓冲液(内槽)均直接使用 1×BN/CN PAGE 电泳缓冲液进行电泳。

2.2.2 BN-PAGE 电泳:

阳极缓冲液(外槽)使用 1×BN/CN PAGE 电泳缓冲液, 阴极缓冲液(内槽) 按照下表配制:

	1×蓝色阴极缓冲液
	150 ml
10×BN/CN PAGE 电泳缓冲液	15 ml
2% G-250 染料(电泳用)	1.5 ml
超纯水	定容至 150 ml

2.3 准备样品:

2.3.1 CN-PAGE 电泳:

总体积	10 µl
蛋白样品	x µl
4×BN/CN-PAGE 蛋白上样缓冲液	2.5 µl
超纯水	补至 10 μl
	不要加热

2.3.2 BN-PAGE 电泳:

2.3.2.1 植物类囊体膜蛋白电泳:

总体积	10 µl
	含去垢剂样品*
植物类囊体膜蛋白样品	v ul
(2%DDM 增溶)	xμl
4×BN/CN-PAGE 蛋白上样缓冲液	2.5 µl
5% G-250 染料(蛋白上样)	1 µl
超纯水	补至 10 μl
	不要加热

^{*}植物类囊体膜蛋白电泳中,含去垢剂样品中染料加入按照以下原则:

植物类囊体样品中 G250 终浓度为去垢剂终浓度的 1/4。例如样品中 DDM (n-Dodecyl **β-D-maltoside**, **β-DM**, **n**-十二烷基-**β-D**-麦芽糖苷)终浓度为 **2%**,则需要 **G-250** 终浓度为 **0.5%**。 10 ul 蛋白样品中需要加 5% G-250 染料 1 ul。

2.3.2.2 动物线粒体 BN 样品电泳:

总体积	10 µl	
	含去垢剂样品*	
动物线粒体 BN 样品	v ul	
(1%DDM 增溶)	x µl	
4×BN/CN-PAGE 蛋白上样缓冲液	2.5 µl	
5% G-250 染料(蛋白上样)	0.25 µl	
超纯水	补至 10 μl	
	不要加热	

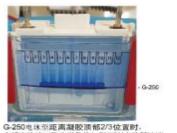
^{*}动物线粒体 BN 样品电泳中,含去垢剂样品中染料加入按照以下原则:

动物线粒体 BN 样品中 G250 终浓度为去垢剂终浓度的 1/8。例如样品中 DDM 终浓度为 1%,则需要 G-250 终浓度为 0.125%。10 ul 蛋白样品中需要加 5% G-250 染料 0.25 ul。

2.4 电泳过程:

2.4.1 CN-PAGE 电泳:

电泳内外槽均使用 1×BN/CN PAGE 电泳缓冲液。在电泳槽的内槽内加入 1×BN/CN PAGE 电泳 缓冲液(让电泳缓冲液漫过加样孔), 轻轻拨出预制胶梳子, 用 1ml 吸头冲洗加样孔 3 次, 随后在电泳 槽外槽加入适量的 1×BN/CN PAGE 电泳缓冲液。


CN-PAGE 电泳			
恒电压	起始电流	结束电流	电泳时间
120V	10-15mA/板胶	4-10mA/板胶	50+min
注: 冰浴电泳			

2.4.2 BN-PAGE 电泳:

BN-PAGE 电泳外槽使用 1×BN/CN 电泳缓冲液;内槽开始电泳使用的是 1×蓝色阴极缓冲液, 冰浴电泳,等待电泳指示前沿到达距离凝胶顶部 2/3 处时,将电泳缓冲液更换为 1×BN/CN 电泳缓冲液,继续后续电泳,因为过多染料会影响蛋白在凝胶中的迁移以及蛋白后续的转膜实验。

BN-PAGE 电泳条件(一板胶)

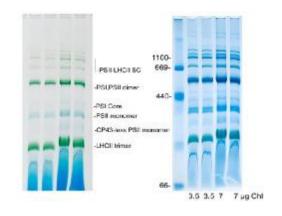
======================================					
恒电压	起始电流	电泳时间	缓冲液		
120 V	8-15 mA	20-25 min	1×蓝色阴极缓冲液	冰浴电泳	

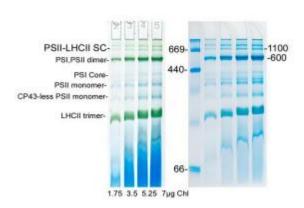
内槽电泳波更换为无色的1×BN/CN电泳程冲波

G-250 指示前沿电泳至距离凝胶顶部 三分之二处,更换内槽缓冲液为无色 的 1×BN/CN 电泳缓冲液

恒电压	继续电泳时间	结束电流	缓冲液	
120 V	45 min +	3-5 mA	1×BN/CN 电泳缓冲液	冰浴电泳

注: 在 Blue Native PAGE 凝胶电泳期间,电流下降至低于 1 mA 很常见。有些电泳电源如伯乐电源


有负载检查功能,电流过低(低于 4mA) 会认为没有负载,报错 E1 错误代码,终止电泳。解决方法是更换电泳电源,如使用国产电源:另外可以调高电压高于 300 V,使得电流不要低于 4mA。


3. 转膜:

BN-PAGE 转膜必须用 PVDF 膜,不能用 NC 膜,因为 NC 膜与 G-250 结合非常紧密,不易去除。转膜后 PVDF 膜上的蓝色染料可以用无水甲醇漂洗去除。转膜缓冲液推荐使用 10×BN 转膜缓冲液(货号: BC600P)。

4. 染色:

- 4.1 将电泳后的 PAGE 胶取下放入塑料容器中,加入适量 FastBlue 蛋白染色液或常规考马斯亮蓝染色液(以刚刚覆盖过胶面为适),高于 1 μq 含量的蛋白条带 1-2 分钟即可见。
- 4.2 摇床常温摇动 10-15 分钟至条带清晰可见。
- 4.3 加入适量蒸馏水脱色,期间更换 1-2 次蒸馏水,摇床常温摇动 10-15 分钟至背景干净。
- 4.4 观察保存结果。
- 5. 实验示例:

BN-PAGE 3-12% Precast Gel 样品: 豌豆类囊体膜蛋白 恒压 120V 1.5 h 1×BN/CN 电泳缓 冲液 冰浴电泳 BN-PAGE 4-16% Precast Gel 样品: 豌豆类囊体膜蛋白 恒压 120V 2 h 1×BN/CN 电泳缓冲液 冰浴电泳